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The London penetration depth λ(T ) has been measured in single crystals of Ba(Fe1−xCox)2As2
using the tunnel diode resonator technique. The measured doping levels of x = 0.038, 0.047,
0.058, 0.074 and 0.10 range from underdoped to overdoped concentrations. The measurements
have shown that the density of carriers participating in superconductivity decreases sharply in the
underdoped regime, but the penetration depth as a function of temperature exhibits a robust power
law, ∆λ(T ) ∼ T n, for all measured dopings, with n between 2 and 2.5. We discuss the implications
of these results and possible interpretations of such robust behavior.

PACS numbers: 74.25.Nf,74.20.Rp,74.20.Mn

The structure and symmetry of the superconducting
order parameter is of crucial importance for determining
the pairing mechanism in the newly discovered Fe-based
pnictide superconductors. A useful method of probing
the gap structure is to measure the magnetic penetra-
tion depth in single crystals. The two parent systems
for which a considerable amount of effort has been put
forth to study are REFeAsO (1111) and AEFe2As2 (122),
where RE is a rare earth and AE is an alkali earth.

In the fluorine doped, or oxygen deficient, 1111
system, the majority of experiments indicate a fully-
gapped Fermi surface (FS). Measurements of the Lon-
don penetration depth, λ(T ), using a tunnel diode res-
onator (TDR) technique on NdFeAsO0.9F0.1 [1] and
SmFeAsO1−xFy [2] as well as microwave cavity per-
turbation on PrFeAsO1−y [3] have found an exponen-
tial temperature dependence of λ(T ) at low tempera-
tures. Similar conclusions have been reached by muon
spin relaxation (µSR) studies and most point contact
Andreev Reflection (PCAR) measurements [4], although
some of them have been interpreted in terms of nodal
gaps. [5]. Knight shift measurements indicate spin sin-
glet superconductivity. The spin-lattice relaxation rate,
1/T1 ∼ T 3, is characteristic of nodal superconductiv-
ity, but can be reconciled with the extended s± model
by pair-breaking scattering under particular assumptions
about its strength and defect concentration [6].

The situation in the 122 system is somewhat more con-
troversial. TDR measurements on Ba(Fe0.93Co0.07)2As2
have shown a clear non-exponential behavior of λ(T ) [7],
whereas microwave measurements on Ba1−xKxFe2As2
were interpreted in terms of two fully opened super-
conducting gaps [8]. In this paper, we focus on
penetration depth studies of large single crystals of
Ba(Fe1−xCox)2As2 with different Co dopings. We find
that the penetration depth exhibits a robust power
law, ∆λ(T ) ≈ C(T/Tc)

n, for all x. There is a clear
change of regime at x ∼ 0.06, where (i) the orthorhom-

bic/antiferromagnetic – tetragonal/nonmagnetic phase
boundary crosses the superconducting phase boundary
(Fig. 1), (ii) n changes from 2.0±0.1 to 2.4±0.1 and (iii)
the coefficient C suddenly drops by an order of magni-
tude. This strongly suggests that the values of the ex-
ponent, and probably the power law itself, are not due
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FIG. 1: (Color online) (a) Raw data for x = 0.038 (under-
doped) and x = 0.058 (near optimal doping, the data has
been divided by a factor of 5 for clarity). The inset em-
phasizes a magnetic/structural transition. (b) phase diagram
showing structural, Ts, and superconducting, Tc, transitions
determined from transport [9] and TDR measurements.
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FIG. 2: (Color online) 4πχ (T ) in single crystals of
Ba(Fe1−xCox)2As2 for different x.

to impurities, unless there is a sudden change in the im-
purity scattering around x = 0.06, but is an intrinsic
characteristic, likely related to the proximity to the mag-
netic ordering/structural transition. Our separate study
shows a λ(T ) ∼ T 2 behavior in a hole-doped 122 system,
(Ba1−xKx)Fe2As2, as well.

Single crystals of Ba(Fe1−xCox)2As2 were grown out
of self flux [9]. The actual cobalt concentration was
determined by wavelength dispersive x-ray spectroscopy
in the electron probe microanalyzer of a JEOL JXA-
8200 Superprobe. Magneto-optical imaging has revealed
homogeneous Meissner screening. Slabs with sizes of
∼ 1 × 1 × 0.2 mm3 and mirror-like surfaces were cleaved
with a razor blade from larger crystals.

The in-plane London penetration depth, λ(T ), has
been measured using a self-oscillating tunnel diode res-
onator (TDR) [10]. A sample to be studied is mounted
on a sapphire rod and inserted into the inductor coil
of the tank circuit. Throughout the measurement the
temperature of the circuit is stabilized at 5.00 K ± 0.01
K. This is essential for stability in the measured reso-
nant frequency, which is resolved to about 0.01 Hz. This
translates to the ability to detect changes in λ(T ) in the
range of an Å. The ac magnetic excitation field in the
coil is about 20 mOe, which is small enough to ensure
that no vortices are present. The sample, with mag-
netic susceptibility χ(T ), leads to a change in the res-
onant frequency of ∆f ≡ f(T )− f0 = −G4πχ(T ), where
f0 = 1/2π

√
LC ≈ 14 MHz and G ≃ f0Vs/2Vc (1 − N) is

a geometrical calibration factor defined by the coil char-
acteristics and the sample volume Vs. G is measured
directly by pulling the sample out of the coil at the low-
est temperature [11]. The susceptibility of a rectangular
superconducting slab in the Meissner state can be writ-
ten in terms of λ(T) and a characteristic dimension R,
as 4πχ (T ) = λ/R tanh (R/λ) − 1 [11].

Microscopic, thermodynamic and transport measure-
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FIG. 3: (Color online) Low-temperature behavior of ∆λ(T )
for all studied concentrations. Solid lines are the fits to ∆λ ∝

C(T/Tc)
n with C and n as free parameters.

ments of the Ba(Fe1−xCox)2 crystals used in this study
have shown that in this particular system, superconduc-
tivity coexists with the orthorhombic phase in the under-
doped regime [9]. Our TDR measurements reveal similar
features. Fig. 1(a) shows TDR frequency shifts as a func-
tion of temperature for scans running from below Tc to
≈ 120 K for two samples with x = 0.038 and 0.058. The
data for the x = 0.058 sample has been divided by a fac-
tor of 5 for clarity. In the normal state, the magnetic
penetration depth is limited by the skin depth, which
depends on the normal-state resistivity. The overall vari-
ation of ∆f over the transition region is about 20 Hz ,
which corresponds to a variation of about 45 nm in the
skin depth. This should be compared to the 13300 Hz
change corresponding to the superconducting transition
of the sample. Detection of the high temperature tran-
sition, which was determined by eye as the minimum in
∆f(T ) (see Fig. 1), as well as the superconducting Tc,
which was determined by eye as the onset, are in excellent
agreement with transport measurements [9], as shown in
Fig. 1(b). Fig. 2 shows the rf susceptibility constructed
from the TDR frequency shifts in Ba(Fe1−xCox)2As2 for
x = 0.038, 0.047, 0.058, 0.074 and 0.10, which cover
the range from underdoped to overdoped. Optimal dop-
ing for this series occurs for a concentration between
x = 0.058 and 0.074.

The low-temperature variation of the penetration
depth is examined in Fig. 3. For all superconducting
samples we observe a power law ∆λ(T ) ∝ CT n. The fit-
ted exponent n varies from n = 2 ± 0.1 for underdoped
samples to n = 2.5±0.1 for the overdoped samples. If the
superconducting density itself follows a power law with
a given n, then C = fs(c/ωp)S, where fs is the super-
conducting fraction at zero temperature, S is defined by
the fraction of the Fermi surface that is gapless (which
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FIG. 4: (Color online) Scaled ∆λ(T )/A vs (T/Tc)
2 where A

is obtained from the fitting, ∆λ ∝ A(T/Tc)
2.

may reflect a multigap character of the superconductiv-
ity, possible nodal structure, unitary impurity scattering
strength, etc) and ωp is the plasma frequency.

To examine how close the overall power-law behavior
is to the quadratic one, we plot in Fig.4 ∆λ((T/Tc)

2)
scaled by the prefactor A obtained from the fitting of the
data to ∆λ(T ) ∝ A(T/Tc)

2 at low temperatures (below
0.3 Tc) with only one free parameter, A. At a gross level,
all samples follow the λ(T ) ∼ T 2 behavior rather well.

To summarize the observed power-law behavior, the
upper panel of Fig. 5 shows the exponent n as obtained
from the best fit with two free parameters, ∆λ(T ) ∝
CT n. The lower panel of Fig. 5 shows the prefactor C
obtained from the above fit as well as a prefactor obtained
by fitting to a pure quadratic behavior, ∆λ(T ) ∝ AT 2.
There is a clear change of regime at x ∼ 0.06: (i) at lower
x the coexistence of antiferromagnetism and orthorhom-
bicity with superconductivity has been inferred [9] (also,
see Fig. 1), (ii) at x ∼ 0.06, n changes from 2.0 ± 0.1 to
2.4± 0.1 and (iii) the coefficient C suddenly drops by an
order of magnitude (Fig. 5).

Let us now discuss the implications of these observa-
tions. If the Fermi surface (FS) is fully gapped, the pen-
etration depth of a homogeneous and clean superconduc-
tor in the local limit exhibits the well-known exponential
temperature dependence:

∆λ (T ) = λ (0)

√

π∆min

2kBT
exp

(

−
∆min

kBT

)

, (1)

where ∆min is the minimal value of the gap. This holds
roughly until kBT . ∆min/5. Our data are not consis-
tent with this behavior. In what follows we comment
on the viability of various scenarios that yield power-law
behavior of λ(T ). If a material is clean, in the local
limit, anisotropic pairing with line or point nodes of the
pairing gap leads to a linear or quadratic temperature
dependence of ∆λ (T ), respectively. Thus, the most di-
rect interpretation of our data would be in terms of point
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FIG. 5: (Color online) Doping dependence of the exponent
n (upper panel) and of the fitting prefactors A and C (lower
panel). The inset shows that the exponential behavior de-
scribed by Eq. 1 is well represented by the power law with
n ≈ 4.

nodes of the gap [12, 13], as for example in PrOs4Sb12

[13]. However, this is only correct if the system is clean
and in the local limit. ∆λ (T ) ∝ T 2 is consistent with
line nodes [14] of the gap if one includes scattering by im-
purities [15] or nonlocal corrections [16]. Unitary impu-
rity scattering creates a state with a quadratic behavior
below some characteristic temperature [15] kBT ∗ ∼ Γ,
where Γ is the impurity scattering rate. In our case the
requirement would be Γ & kBTc/3. This explanation re-
quires relatively strong impurity scattering [17] with a
substantial unitary component, consistent with the fact
that our samples are doped in the active plane, but im-
plying that in clean samples, i.e. samples doped away
from the Fe-As planes, a linear behavior should be re-
stored. A quadratic T dependence of ∆λ may also be
the result of strong impurity scattering in a pairing state
that is fully gapped in the clean limit. The exponential
behavior of Eq.1 transforms to quadratic if the gap is
driven into a gapless or near-gapless regime by impurity
scattering. As in Ref. [6], it would require a scatter-
ing rate Γ of the order of the smallest gap ∆min and
a relatively fine balance between the unitary and Born
scattering regimes. In clean samples, i.e. those doped
away from the Fe-As planes, an exponential, or respec-
tively, linear behavior should be restored. Indeed, the
existing data for the 1111 system [1, 2, 18] surprisingly
do not show a quadratic dependence; namely, an expo-
nential one in the As-based compounds [1, 2] but a linear
one in the P-based system [18]. Furthermore, a problem
with this explanation is that we do not see any system-
atic dependence of the ∆λ(T ) characteristics on impurity
concentration, but rather an abrupt change of regime as
we cross the structural/magnetic phase transition.
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Another mechanism that may transform the linear be-
havior in a state with line nodes into a quadratic one at
T < T ∗ ≃ ∆(0)ξ0/λ(0) is due to nonlocal effects [16],
where ξ0 is the coherence length. In the Fe-pnictides,
however, T ∗ would be less than 1 K.

The power-law behavior of ∆λ may also be a conse-
quence of the material being inhomogeneous. While the
observation of a smearing of the jump in heat capacity
at Tc in under- and over- doped samples [9] may be con-
sidered a hint for such a scenario, we do see very homo-
geneous Meissner screening in magneto-optical measure-
ments. Also the jump in Cp is doping dependent and it
is unlikely that any inhomogeneity can explain the uni-
versal behavior shown in Fig. 3 for all concentrations.

In view of this discussion, it is tempting to look for an
explanation on a phenomenological level that would not
rely on impurity scattering as a crucial element changing
the functional dependence of λ. Indeed, any excitation
coupled with electrons with an energy larger than ∼ 2πT
is pair-breaking, including regular phonons. Moreover,
for an s± or a d−wave state even phonons with arbi-
trarily small energies can be pairbreaking. The same
holds for the coupling to other collective bosonic modes,
such as antiferromagnetic spin fluctuations. Since ther-
mally excited bosons are needed for pairbreaking, the
scattering rate Γ becomes T -dependent [19]. In the case
of line nodes, where a T -independent Γ yields an expo-
nent n = 2, strong scattering off of the thermally excited
bosons would always yield a smaller exponent. Given the
special role that the AFM critical point seems to play, the
possibility exists that the pair breaking fluctuations are
associated with an intermediate range dynamic ordering,
like the dynamic domains speculated in Ref. [20]. These
will have very small energy and a potential to be strong
scatterers. A clear derivation of the exponent n that re-
sults from such a picture is still missing.

To summarize, we have measured the temperature
dependence of the penetration depth in single crystal
Co-doped BaFe2As2. The main observations are: (1)
the superconducting density in Ba(Fe1−xCox)2 changes
quadratically with temperature to at least Tc/3 and so
exponential or linear behavior can be safely excluded; (2)
there is a sharp change in the T dependence of the pene-
tration depth (and probably in the absolute value at zero
temperature), which occurs near the same concentration
at which the magnetic ordering in the normal state disap-
pears; (3) there is no visible sample quality effect on the
exponent and amplitude of the temperature dependent
part of the penetration depth.

The observed behavior is compatible with neither fully
gapped nor line node superconductivity; “accidental“
point nodes within the s± model can be excluded based
on weak concentration dependence of the power-law ex-
ponent, but could still be considered for alternative pair-
ing mechanisms. Impurity-driven quadratic behavior is
possible, but seems somewhat problematic even for a line-

nodal state, and especially for a nodeless state, given no
visible dependence on the impurity concentration. The
possible influence of the proximity to antiferromagnetic
ordering suggest an intriguing interpretation in terms of
pair-breaking defects of magnetic nature whose concen-
tration is controlled by the temperature and not by Co
concentration.
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